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Three Isomers of the AI-C2H2 System 

Sir: 

In two recent communications to this journal, Kasai and 
McLeod have reported the synthesis of the aluminum atom-
ethylene' and aluminum atom-acetylene2 adducts. From the 
electron spin resonance (ESR) spectra of these new molecules, 
Kasai and McLeod draw some qualitative conclusions con­
cerning their molecular structures. Although the ESR data 
suggest a conventional3,4 w-bonded structure for Al-C2H4, 
Kasai and McLeod suggest a very different sort of equilibrium 
geometry for AI-C2H2. In the latter case, an Al-C a bond 
seems more consistent with the experimental data, and the 
resulting structure is quite reminiscent of the vinyl radical. 

In the present theoretical study we compare the -K- and 
o--bonded structures considered by Kasai and McLeod. 
However, we emphasize here the possibility of a third isomer 
of AI-C2H2. As noted elsewhere,5^7 single metal atoms form 
relatively strong chemical bonds with carbenes. For this reason 
we have considered the aluminum-vinylidene complex in some 
detail. Although the isolated vinylidene molecule lies ~40 kcal 
higher8 in energy than acetylene, it is expected to form a rather 
strong bond to the Al atom. 

Most of the theoretical work reported here employed stan­
dard double-f basis sets9 of contracted gaussian functions. In 
the usual notation,10 these are labeled Al(I Is 7p/6s 4p), C(9s 
5p/4s 2p), H(4s/2s). For 7r-bonded Al-C2H2 the lowest energy 
electron configuration is found to be 

1 a?2a? 1 bWM 1 b?2bz5a? 3b2
!6a?7a? 2b? 8a? 4b2 (1) 

while that for the obonded vinyl radical like complex is 

la,22a,23a'24a'25a'2la"26a'27a'28a'29a'210a'22a"2lla'212a' 
(2) 

This radical of course has two plausible conformations, with 
the terminal hydrogen lying cis or trans to the aluminum atom. 
Finally the vinylidene complex has as its lowest electronic state 
the electron configuration 

1 a?2a?3a?4a?5a? 1 b? 1 b^6a?7a?2b^8a?2b?9a?3b2 (3) 

As implied by the above discussion, self-consistent-field wave 
functions1' were computed for several electronic states of each 
of the three isomers. 

There appears to be no significant chemical attraction for 
the 7T configuration OfAl-C2H2. That is, although dispersion, 
electrostatic, and charge-transfer interactions are present,12 

the 7r-bonded Al-C2H2 dissociation energy is expected to be 
<5 kcal/mol. The same conclusion holds for 7r-bonded Al-
C2H4, where the effects of extensive configuration interaction 
and aluminum d functions were explicitly considered. 

The equilibrium geometries of the rj-bonded and vinylidene 
complexes are given in Figure 1. At the SCF level of theory the 
0- complex is bound by 8.0 (trans) or 8.2 kcal (cis), while the 
vinylidene complex is bound by 21.5 kcal relative to infinitely 
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Figure 1. Predicted equilibrium geometries for the vinylidene and <r-bonded 
isomers of AI-C2H2. There are two conformers of the obonded system, 
with the terminal hydrogen lying trans (the middle structure) or cis (the 
lowest structure) to the Al atom. Bond distances are in angstroms. 

separated aluminum plus acetylene.13 Configuration inter­
action including all valence electron single and double exci­
tations (3461 configurations) reduces the dissociation energy 
of the vinylidene complex slightly, to 19.3 kcal. A correction 
for higher excitations (unlinked clusters)14 provides our final 
ab initio prediction of 20.0 kcal for the Al-CCH2 bond energy. 
The shorter (by 0.08 A) Al-C internuclear separation for the 
vinylidene complex also attests to its stronger Al-C bond. 
Analogous CI studies of the trans-ff-bonded complex (6739 
configurations) yield a binding energy of 7.5 kcal. 

The vinylidene structure is inconsistent with Kasai, McLeod, 
and Watanabe's ESR spectrum; there may appear to be a 
conflict between theory and experiment. However, the barrier 
height between vinylidene and acetylene is ~8 kcal8 and might 
not be greatly reduced by the presence of the Al atom. If this 
is the case, then the 1,2-hydrogen shift (eq 4) might not occur 

AA' 

AJl C = C H . W 

at all at the liquid helium temperatures of Kasai and 
McLeod.2 

The most fascinating feature of the present study is that, 
while the isolated acetylene-vinylidene reaction is endothermic 
by 40 kcal, the same process becomes exothermic in the pres­
ence of an Al atom. We suspect that other endothermic reac­
tions such as the methylcarbene-ethylene and methylni-
trene-methylenimine rearrangements will also become 
favorable when complexation to a metal atom, metal cluster, 
or metal surface6 is achieved. This general mechanism for using 
metal systems to transform endothermic reactions into nearly 
degenerate rearrangements may play a key role in catalysis and 
surface chemistry. 
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Laser Flash Photolysis with NMR Detection. 
Microsecond Time-Resolved CIDNP: Separation 
of Geminate and Random-Phase Processes 

Sir: 
The time resolution of conventional high resolution NMR 

spectroscopy is low because of the intrinsic properties of nu­
clear spin systems. Line-shape analysis for systems undergoing 
spin exchange overcomes this limitation to some extent.1 Flow 
and stopped-flow methods permit direct kinetic measurements, 
but are at best restricted to reactions occurring over tens of 
milliseconds.2 CIDNP provides information on chemical events 
taking place on a time scale ranging from 10 -8 to 10 -3 s by 
freezing this information into patterns of nuclear spin polar­
ization within the diamagnetic reaction products.3 This in­
formation is conveniently sampled on the time scale of the 
nuclear spin-lattice relaxation times of the products, that is, 
seconds. Kinetic analysis of data obtained under such 
steady-state conditions is, however, highly indirect and is de­
pendent on many theoretical assumptions. We report here 
examples of time-resolved CIDNP with a resolution of 1 X 
10~6 s, a time scale which allows the direct measurement of 
useful chemical kinetics. Ernst and co-workers have reported 
qualitatively similar experiments with a time resolution of 2.5 
X 10 -3 s.4 These latter experiments were directed at specific 
dynamic nuclear spin phenomena43 and illustrate the obser­
vation of slow secondary reactions of diamagnetic trans­
ients.415 

The experiment, schematically represented in Figure 1, is 
in principle applicable to any system in which photolysis creates 
a radical pair. The sample is placed in the probe of a high 
resolution NMR spectrometer and is subjected to a series of 
radio frequency pulses randomly modulated in time and phase. 
This saturation pulse of <~50-ms duration totally destroys any 
nuclear magnetization thus eliminating all background sig­
nals.5 The sample is then irradiated by an intense laser flash 
lasting several nanoseconds. The excited molecules generate 
radical pairs which induce nuclear magnetization by geminate 
and random-phase processes. The laser pulse is followed at any 
desired time interval, T, by a radio frequency pulse creating a 
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